Newsletter 2021 July for HOCT-1F

From Huvitz

HOCT-1F

Ver 1.3.2 July 27. 2021

How are you? We're very pleased to get in touch with you again. We hope that everyone overcome COVID19 safely, meet face to face soon. We're sincerely appreciated all your interests and treatment with our HOCT.

We added two optional functions, Biometry and Corneal Topography in our HOCT in the early of 2021. We've made them complete after the first release thanks to your advices, this version 1.3.2 is including all improvements for biometry & topography. Deep learning algorithm based on AI technology is applied to enhance the analysis of glaucoma.

This version is including the following improvements:

- AL measurement in Biometry let you get SimK such as Kf, Ks for IOL lens consecutively.
- A new sophisticated algorithm Kf, Ks values are applied to calculate SimK so that could be close to those of Refracto-Keratometer.
- Deep learning algorithm based on AI technology is applied to enhance the analysis of glaucoma.
- The dialog box for IOL calculation can be printed.

This is the newsletter summarizing all improvements included into the latest Version 1.3.2 and we are constantly working on other improvements after listening to your advices carefully.

Thank you again for your sincere interest in HOCT. We'll keep going to be with you and your expectation. I hope that you will enjoy playing with our OCT.

HOCT-1F

Angiography Biometry Corneal Topography

Contents

- ◆ A consecutive SimK measurement after AL measurement
- ♦ SimK values compared to those of ARK-1
- ◆ Improved Glaucoma Analysis with AI technology
- ◆ Report from IOL calculation page
- ◆ Additional information for Corneal Topography
- ♦ How to measure a fine Biometry & Corneal Topography.

A consecutive SimK after AL measurement

- Measurement Setting
- Getting AL measurement 3times
- Setting a wide anterior lens
- Getting SimK
- Confirming a result

A consecutive measurement of AL and SimK

Huvitz © 2009, All rights reserved.

Q-J-200-05(R0)

SimK values adjusted to be close to those of R/K devices

- SimK of a cornea topography are derived from curvatures of a wide range of a cornea.
- Curvature of R/K devices are derived from curvatures at the central 3mm.
- IOLs

have been calculated from curvatures of R/K devices.

- SimK om HOCT Applies a new sophisticated algorithm to be similar to those of RK devices.
- **Result in laboratory** Our values are compared with those of ARK-1.

* Topography calibration should be done again with Ver 1.3.2

Huvitz © 2009, All rights reserved.

Data

	0	D	0	S
	ARK-1	HOCT-1	ARK-1	HOCT-1
	R1	R2	R1	R2
Patient 1	7.71	7.72	7.66	7.67
Patient 2	8.01	8.01	7.93	7.95
Patient 3	8	8.05	8.04	8.03
Patient 4	7.95	7.92	8.06	8.08
Patient 5	7.82	7.82	7.88	7.91
Patient 6	8.38	8.33	8.37	8.36
Patient 7	8.16	8.18	8.2	8.22
Patient 8	7.75	7.71	7.76	7.74
Patient 9	8.05	8.07	8.14	8.09
Patient 10	7.71	7.74	7.75	7.73
Patient 11	7.83	7.86	7.83	7.89
Max Diff	-0.05	0.13	-0.06	-0.12
Shift	-0.003	-0.008	-0.008	-0.038

Enhanced Analysis for Glaucoma

- Traditional heuristic segmentation versus Deep Learning Deep learning based on AI technology is much more robust than a traditional one.
- Example of the comparison with HOCT and Cirrus About TSNIT, Quarter/Clock RNFL chart
- Appendix

All NFL comparison of old aged people in laboratory between HOCT and Cirrus.

Traditional heuristic segmentation versus Deep Learning

 Deep Learning algorithm based on Al is much more robust than a traditional method especially against a weak signal and a noise.

Comparison between HOCT and Cirrus

Male Birthdate: 1974

Normal case

Male Birthdate: 1976

Suspicious case

Report for IOL

IOL Calc	ulation						
К1	41.25	K2	43	.58	Axis	90	
.ZEISS Acri.Lens	s 11C	•		A:118	3.90	12.33	
SRKII		•		IOL(D)	REF(D)	
Target	0.00			11.50)	0.83	
SIRC	0.00			12.00 12.50)	0.33 -0.17	
	_	_		13.00)	-0.67	
Surgery	Incisional R	ef	-	13.50		-1.17	
		Re	port	A	pply	Close	

Biometry	[OS]	Name : kgy			Gender : M	Physician :	Exam date : 7/27/2021
8.0x8.0mm / A1024xB16		ld:0726_test	DOB:	1/1/1971	Gender: Asian	Operator :	Exam time : 2:17 PM
	IOL C	alculation	1				
	К1	41.25	K2	43.58	Axis	90	
	.ZEI	SS .Lens 11C	•	A::	118.90	12.33	
	SRK	II	•	IOI	_(D)	REF(D)	
	Targe	et 0.0	0	11	.50	0.83	
				12	.00	0.33	
	SIRC	0.0	0	12	.50	-0.17	
				13	.00	-0.67	
	Surg	ery Incisiona	l Ref. 🝷	13	.50	-1.17	

Huvitz

SN:SN00000000

Additional information for a corneal topography

Centra	al Keratom	netry - SimK			- [D] Ke	eratoo	conus screening	•		
An	terior					к	KPI I	Keratoconus Prediction Index	0.19		
						К	Kera to	oconus	Non-keratoconus		
Kf	7.72m	ım@173°	Min K	7.55mm	@ 99 °	S	SAI S	Surface Asymmetry Index	0.09		
Ks	7.55m	ım@83°	Avg K	7.64mm		D	DSI [Differential Sector Index	1.32		
Су	l 1.00D	@173°	e²	0.69		0	osi	Opposite Sector Index	0.46		
						С	csi (Central/Surrounding Index	-0.07		
	<	•	•••		>	IA	AI I	rregular Astigmatism Index	0.00		
		< e ² : E	Eccent	ricity >	>			< Full Descri	ption >		
					• [Topo]	Default O	Dverl	lay C.Maps:	Values ~	T.Maps :	Sections
					• [Topo]	Default M	Maps	Axial (Anter	None Values	Elevation (Anterior)
								Pachymetry	Sections	Elevation (Posterior)
								L	Averages Meridians		

 \sim

 \sim

RNFL Comparison Test

Experiment Condition

- HOCT : 5 times, Cirrus : 2times
- HOCT Setting : 256x256, 512x96, 512x96, 256x256, 256x256
- Cirrus Setting : 256x256, 256x256
- 9 People : OD & OS
- The following pages consist of HOCT 256x256 | HOCT 512x96 | Cirrus 256x256 | Cirrus 256x256

OD			O S	OD		2) l	_ee_	hc <mark>0S</mark>	Averag	e RNFL Thio	ckness	OD 1 100	976)	3	Average R		O[ess 89 µ	m	О S 89 µm
				DNEL O			DUEL O	-		RNFL Sym	nmetry	9	5%		F	NFL Symme	stry	95%	6
RNFL Quadrar	t	RNFL Qu	uadrant	KNFL QU	adrant		KNFL QI	uadrant		Rin	n Area 1	.07 mm²	1.07 mm²	1		Rim A	rea 1.08 r	nm²	1.08 mm
133		1	139	12	25			137		Dis	c Area 1	.31 mm²	1.17 mm²			Disc A	rea 1.27 r	nm²	1.21 mm
					\sim					Average C/D	Ratio	0.44	0.28		Ave	erage C/D Ra	itio 0.4	0	0.31
_(\\$/		$(\land $	s		·/			∛. ∖.		Vertical C/D	Ratio	0.38	0.26	0	Ve	rtical C/D Ra	itio 0.3	7	0.29
89 T X N	80 Distribution	63 (N	X T)94	····	\sum ")"	Distribution	° ("/	<u>`</u>]"		Cup V	olume 0.0	085 mm³	0.023 mm ³			Cup Volu	me 0.071	mm³	0.026 mm
136	of Normals		133	1	32	of Normals 93%	X	134		Neuro-r	etinal Rin	n Thickn	ess			Neuro-reti	nal Rim Th	nicknes	8 S
PNEL Clock H	5%	PNEL CI	ock Hours	RNFL Clo	ck Hours	5%	RNFL CI	ock Hours	μm	OD -	OS			_	µm _	— OD	OS		
KINE CLOCK H	1%	KINFL CO	OCKHOUIS			1%			⁸⁰⁰ ±					8	°° İ				
152 124 12	4	117	145 156	154 11	16 107		116	141 153	400 -				·	4	00	*****			ee.
108	98	73	108	105	95		n	105	o İ										- and
66	72	68	73	65	74		68	71	TEMP	SUP	NAS	INF	TEMP		TEMP	SUP	NAS	INF	TEM
	7.00			97	57		45												
165	5	~ 105	168	168	106		108	167		к	NFL Thic	kness				RNF	L Thickne	SS	
125	-	1	127		21			126	µm T	OD •	OS				µm	OD ••••	OS		
TSNIT				ISNIT			00	05	200 +				1	2	⁰⁰ +	0			<i>c</i> .
250		- 00	<u> </u>	250			_ 00	0	100 7			وينز		1	00	Perio		Jan.	
200				200					_ 1								- march		600
150			\sim	150	\frown			\sim	TEMP	SUP	NAS	INF	TEMP		TEMP	SUP	NAS	INF	TEM
100	St.	\square		100							Diversifie	sd:					Diversified:		
30				30		~~			1	os [Distribution of I	Normals	119		108	Distr	ibution of Norma	ls	111
0.47	5 N			0,477		N				s 🔿 T	NA 95% 59	2 1%	s >		S.		95% 5% 1%	- <u>/</u>	<s></s>
	3 N	<u> </u>			,				_78 (T	X) 56		47	(N 🗡 Т) і	82 7	6 (T 🗡	N 57		49 (1	ı×٦
Norm	Summary		Norm	Norm		Summary		Norm		·	RNFL Quadra	nts			\sim		RNFL		$\langle \cdot \rangle$
0.73-0.99 93	RNFL Sym. (96)	93	0.73-0.99	0.73-0.99	93	RNFL Sym. (96)	93	0.73-0.99	1	18			122		115				115
9.16~126.59 109	RNFL Avg. (um)	107	99.16-126.59	99.00-126.43	106	RNFL Avg. (um)	106	99.00-126.43	141	⁹⁴ 81			83 ¹²⁰ 153		146 ¹⁰⁰	78		81	i ¹¹⁷ 13
0.21-0.79 0.3	C/D Ratio (Vert)	0.35	0.21-0.79	0.21-0.79	0.37	C/D Ratio (Vert)	0.35	0.21-0.79	88 🔨	63		51	9	8	83 /	66		53 🗡	$\overline{\mathbb{D}}$
0.05-0.65 0.2	2 C/D Ratio (Area)	0.21	0.05-0.65	0.06-0.65	0.22	C/D Ratio (Area)	0.21	0.06-0.65	58 🕞	56	RNFL	50	\rightarrow	62 5	5 🖂	59	RNFL	49 🌔	\gg
1 55-3 53 1 5	B Disc Area (mm)	1.49	1 55-3 53	1.55-2.54	1.24	Disc Area (mm)	1.11	1 65-2 54	88	49	Hours	s 39	8	6	90 🔨	V 46	Hours	43 🗸	
0.00-0.42 0.0	5 Cup Vol. (mm)	0.03	0.00-0.42	0.00-0.42	0.05	Cup Vol. (mm)	0.03	0.00-0.42	152 1	14 86			80 122 163		153 111	80		71	1 117 15
									_										

0.00-0.43

0.15

Cup Vol. (mm)

0.15

0.00-0.43

.

1 C	OD	\wedge		\triangle			
8	95 µm	verage RNFL Thickness	kne	e RNFL Thio	Average	A	Averag
%	87	RNFL Symmetry	met	RNFL Sym			
1.2	1.13 mm²	Rim Area	Ar	Rin			
1.9	1.72 mm²	Disc Area	: Ar	Dis			
	0.57	Average C/D Ratio	Rat	Average C/D	A		A
	0.53	Vertical C/D Ratio	Rat	Vertical C/D	1		
0.20	0.194 mm³	Cup Volume	olur	Cup V			

Neuro-retinal Rim Thickness

RNFL Thickness

TEMP INF SUP NAS

75

67

75

91

. . .

The start from

.

61

47

83

4.40

163

95

80

79 103 138

Clock

Hours

\wedge	OD	OS
Average RNFL Thickness	91 µm	90 µm
RNFL Symmetry	63	3%
Rim Area	1.08 mm²	1.28 mm²
Disc Area	1.65 mm²	1.92 mm ²
Average C/D Ratio	0.57	0.57
Vertical C/D Ratio	0.51	0.49
Cup Volume	0.182 mm ³	0.195 mm ³

Neuro-retinal Rim Thickness

0.10

Cup Vol. (mm)

0.00-0.42

0.12

0.00-0.42

0.00-0.42

0.00-0.42

0.12

Cup Vol. (mm)

0.10

\wedge	OD	OS
Average RNFL Thickness	86 µm	84 µm
RNFL Symmetry	93	3%
Rim Area	1.00 mm²	0.98 mm²
Disc Area	1.68 mm²	1.64 mm ²
Average C/D Ratio	0.63	0.63
Vertical C/D Ratio	0.61	0.46
Cup Volume	0.196 mm ³	0.125 mm ³

Neuro-retinal Rim Thickness

RNFL Thickness

INF

121

62

42

54

OD				6 9 §n	<mark>VD</mark>				OS			OD ess 71 µm	О S 82 µm	3	Average RNFL T	hickness 7	OD 1 µm	О \$ 75 µm	
											RNFL Symme	etry 4	1%	_	- RNFL S	ymmetry	919	6	
RNFL Qu	adrant		RNFL Qu	adrant	RNFL Quad	drant		RNFL Q	uadrant		Rim Ar	rea 0.80 mm²	0.90 mm²		-	Rim Area 0.8	0 mm²	0.87 mm ²	
7	8		1	02	69			:	104		Disc A	rea 1.49 mm²	1.55 mm²	1	[Disc Area 1.5	3 mm²	1.59 mm²	1
											Average C/D Ra	atio 0.67	0.64		Average (C/D Ratio	0.68	0.67	
	5		\wedge	s / \	s			\wedge	s		Vertical C/D Ra	atio 0.67	0.65	<u>ر</u>	Vertical (C/D Ratio	0.69	0.68	
68 (T)	N 52	Distribution	74 N	× T)71	75 T	N 51	Distribution	79 N	X 1)70		Cup Volu	me 0.204 mm³	0.214 mm ³	`	Cup	volume 0.22	0 mm³	0.231 mm³	
		of Normals			95	$\mathbf{>}$	of Normals	$\overline{\langle}$	95	um	Neuro-retin	nal Rim Thickn	ess	·	Neur	p-retinal Rim	Thicknes	s	
RNFL Clo	ck Hours	5%	RNFL CI	ock Hours	RNFL Cloc	k Hours	5%	RNFL CI	ock Hours	800 ±	00	05		0	uu ⊥	05			
	-	176		-	60		176		100					0	Į				
81	59 56	_	77_91	76	94	49		95	105	400 - 0				41	00 -		· · · · ·		
n	52		61	73	74	50		65		TEMP	SUP	NAS INF	TEMP		TEMP SUP	NAS	INF	TEMP	
53	49		85	64	56	55		77	72		RNF	L Thickness				RNFL Thick	ness		
88 1	23 79		76 1	17 106	79 123	84		78	101 106	μm	OD	OS			µm 0D	OS			
TSNIT					TSNIT					200 I				2	nn I				
250			- OD -	0S	250			— OD	0s	100	A.	: 5		_			0		
200					200					100 1	1 inter	mi		10		· · · · · · · · ·	·	~~	
150					150					0					0				
					100	\sim				TEMP	SUP	NAS INF	TEMP		TEMD SLID	NAS	INF	TEMP	
		~ /	~ // //							12/11	00.	148.5 114	TEMP		TLMF 30F	14.12			
~			γ			\sim	\sim	D			75 Distri	Diversified: ibution of Normals	98		79	Diversified: Distribution of Nor	mals	89	
	-	\sim	×		30			Þ			75 Distri	Diversified:	98		79	Diversified:	mals	89	
04m T	5	N			50 047 -	5	N			64 T	75 Distri	Diversified: ibution of Normals 95% 5% 1%		58 6'		Diversified: Distribution of No NA 95% 5%	1%	89 S	62
o≄‴ _T	s	N Summary		Norm	30 047 T	s	N Summary	_	Norm	64 T	75 Distri S NA NA 54	Diversified: ibution of Normals 95% 5% 1% 72 RNFL		58 6;		Diversified: Distribution of No. NA 95% 5% 53 RNFL	1% 63	89 S T E	62
Norm 0.73-0.99	5	N Summary RNFL Sym. (%)	70	Norm 0.73-0.99	зо одл т Norm 0.73-0.99	5	N Summary RNFL Sym. (%)	8	Norm 0.73-0.99	64 T	75 Distri S N 54 1 Q	Diversified: ibution of Normals 95% 5% 1% 72 RNFL uadrants		58 6:		Diversified: Distribution of No NA 95% 5% 53 RNFL Quadrant	1% 63		62
04m T Norm 0.73-0.99 99.16-126.59	S 70 74	N Summary RNFL Sym. (%) RNFL Avg. (um)	1 70 87	Norm 0.73-0.99 99.16-126.59	30 0.4m T Norm 0.73-0.99 99.00-126.43	5 8 73	N Summary RNFL Sym. (%) RNFL Avg. (um)	887	Norm 0.73-0.99 99.00-126.43	64 T	75 Distri S N 54 1 Q 93	Diversified: ibution of Normals 95% 5% 1% 72 RNFL puadrants		58 6:	79 2 T N 91 53	Diversified: Distribution of No NA 95% 5% 53 RNFL Quadrant	1% 63	89 5 1 85 68	62
Norm 0.73-0.99 99.16-126.59 0.21-0.79	5 70 74 0.84	N Summany RNFL Sym. (%) RNFL Avg. (um) C/D Ratio (Vert)	T T0 87 0.69	Norm 0.73-0.99 99.16-126.59 0.21-0.79	30 0,47 T Norm 0.73-0.99 99.00-126.43 0.21-0.79	5 8 73 0.81	N Summary RNFL Sym. (%) RNFL Avg. (um) C/D Ratio (Vert)	8 87 0.70	Norm 0.73-0.99 99.00-126.43 0.21-0.79	64 T	75 Distri S N 54 1 Q 93 49 53 52	Diversified: ibution of Normals 95% 5% 1% 72 RNFL wadrants	98 98 5 1 98 90 96 108	58 6;	79 2 T N 91 125 ⁵³ 58	Diversified: Distribution of No NA 95% 5% 53 RNFL Quadrant	1% 63 (1) ts	89 5 1 85 68 125	62
0,477 Norm 0.73-0.99 99.16-126.59 0.21-0.79 0.05-0.65	5 70 74 0.84 0.57	N Summary RNFL Sym. (%) RNFL Avg. (um) C/D Ratio (Vert) C/D Ratio (Area)	T0 87 0.69 0.53	Norm 0.73-0.99 99.16-126.59 0.21-0.79 0.05-0.65	30 0,4m 0.73-0.99 99.00-126.43 0.21-0.79 0.06-0.65	5 8 73 0.81 0.63	N Summary RNFL Sym. (%) RNFL Avg. (um) C/D Ratio (Vert) C/D Ratio (Area)	8 8 87 0.70 0.49	Norm 0.73-0.99 99.00-126.43 0.21-0.79 0.06-0.65	64 T	75 Distri S N 54 1 Q 93 49 53 52 52 52	Diversified: ibution of Normals 95% 5% 1% 72 RNFL wadrants 85 RNEL	98 98 N T 98 90 96 108 6	58 63	79 2 T N 91 125 ⁵³ 58 77 5	Diversified: Distribution of No NA 95% 5% 53 RNFL Quadrant	1% 63 ts	89 S T 85 68 125 75	62 5
Norm 0.73-0.99 99.16-126.59 0.21-0.79 0.05-0.65 0.89-2.36	5 70 74 0.84 0.57 0.68	N Summary RNFL Sym. (%) RNFL Avg. (um) C/D Ratio (Vert) C/D Ratio (Area) Rim Area (mm)	T0 87 0.69 0.53 0.88	Norm 0.73-0.99 99.16-126.59 0.21-0.79 0.05-0.65 0.88-2.36	30 0,477 0.73-0.99 99.00-126.43 0.21-0.79 0.06-0.65 0.88-2.36	5 8 73 0.81 0.63 0.51	N Summary RNFL Sym. (%) RNFL Avg. (um) C/D Ratio (Vert) C/D Ratio (Area) Rim Area (mm)	8 87 0.70 0.49 0.85	Norm 0.73-0.99 99.00-126.43 0.21-0.79 0.06-0.65 0.88-2.36	64 T 122 81 62	75 Distri N 54 1 Q 93 49 53 52 57	Diversified: ibution of Normals 95% 5% 1% 72 RNFL wadrants 85 RNFL 49 Clock	98 98 5 7 98 90 96 108 6	58 63 3 5	79 2 T N 91 125 ⁵³ 58 77 5 1	Diversified: Distribution of No NA 95% 5% 53 RNFL Quadrant 3 53 RNFL Clock	11/2 63 (1) ts 73 50 (2)	89 5 1 5 7 68 125 75 68 125 75 68	62 5 61
Norm 0.73-0.99 99.16-126.59 0.21-0.79 0.05-0.65 0.88-2.36 1.55-3.53	5 70 74 0.84 0.57 0.68 1.58	N Summary RNFL Sym. (%) RNFL Avg. (um) C/D Ratio (Vert) C/D Ratio (Area) Rim Area (mm) Disc Area (mm)	T0 87 0.69 0.53 0.88 1.87	Norm 0.73-0.99 99.16-126.59 0.21-0.79 0.05-0.65 0.88-2.36 1.55-3.53	30 0,4m 0.73-0.99 99.00-126.43 0.21-0.79 0.06-0.65 0.88-2.36 1.56-3.54	S 8 73 0.81 0.63 0.51 1.38	N Summary RNFL Sym. (%) RNFL Avg. (um) C/D Ratio (Vert) C/D Ratio (Area) Rim Area (mm) Disc Area (mm)	8 87 0.70 0.49 0.85 1.65	Norm 0.73-0.99 99.00-126.43 0.21-0.79 0.06-0.65 0.88-2.36 1.56-3.54	64 T	75 Distri S N 54 93 49 53 52 57 53	Diversified: ibution of Normals 95% 5% 1% 72 RNFL uadrants 85 RNFL 49 Clock Hours 80		58 63 3 5 63 6 ²	79 2 T N 91 125 ⁵³ 58 77 48 5	Diversified Distribution of No NA 95% 5% 53 RNFL Quadrant 3 53 RNFL Clock 2 Hours	ts 63 73 68 50 71	89 5 7 85 68 125 75 68 45	62 5 61 9

Corneal Topography Measurement

Make sure that a forehead and a chin are put against a supporter and a chinrest tightly.

- Press "Start Scan" button, approach to a patient slowly.
- Find out a corneal signal according to an anterior live image,

3

And then press "Optimize" button to make a signal stronger

· Rotate a joystick upward or downward if there is no a central reflection,

Central Reflection

• Then the central reflection is shown at the upper B-scan Q-J-200-05(R0)

How to make a good corneal topography(II)

(5)

Move the upper of a cornea to the red line

Move HOCT's body toward to a left side or a right side slightly,

Then, the central reflection at the lower B-scan is shown.

Push HOCT's body toward to a patient slightly, in order that The top of a cornea is located at the red line.

Strong & symmetric B-scan at a confirmation display.

 $(\mathbf{6})$

Axial Length Measurement

How to make a perfect AL measurement(I)

(4)

How to make a perfect AL measurement(II)

- Press a joystick if there is a fovea in B-scan.
- A patient must keep its posture until the next joystick pressing.

- Press a joystick if there is a corneal signal.
- Let a patient blinked and relaxed while an internal motor is moving to the macular.

Note

- Check if a patient keep a working distance with two working dot or not.
- The second and the third measurements are done fast with the same procedure.

(6)

Appendix (III)

Lens Thickness Measurement

Make sure that a forehead and a chin are put against a supporter and a chinrest tightly.

Recommended Setting

.- Manual Measurement

- Press "Start Scan" button, approach to a patient slowly.
- Find out a corneal signal according to an anterior live image,
- And then press "Optimize" button to make a signal stronger
- Rotate a joystick upward or downward if there is no a central reflection.
- Then the central reflection is shown at the upper B-scan.
- · Let a patient blink and relaxed.
- And press a joystick if a signal is ok.

Huvitz © 2009, All tigAspatient must keep its posture until the next two joystick pressing.

Note

• This first searching takes a quite long to find out a proper position and a strong signal.

How to make a perfect LT measurement(II)

- Press a joystick if there is a front side of a lens.
- A patient must keep its posture until the next joystick pressing.

- Press a joystick if there is a rear side of a lens.
- And then let a patient blinked and relaxed while an internal motor is moving to the cornea.

Note

- Check if a patient keep its posture after taking a cornea to taking a rear side of a lens.
- The second and the third measurements are done fast with the same procedure.

Q-J-200-05(R0)

How to make a perfect LT measurement(III)

How to make a perfect LT measurement(IV)

							(
AL	04/09/2021 01:39 PM		LT			04/09/2021 08:44 PM	
Index	AL(mm)		Index	ACD(mm)	LT(mm)	CCT(mm)	
#1	24.38	î	#1	2.718	4.237	0.509	1
#2	24.29		#2	2.615	4.203	0.509	
#3	24.35	-	#3	2.594	4.148	0.509	
AVG	24.34		AVG	2.64	4.20	0.509	
SD	0.04		SD	0.05	0.04	0.000	
Range	24.29 ~ 24.38		Range	2.59~2.72	4.15~4.24	0.509~0.509	
Oct S	can		Oct s	Scan			
					4		

HOCT-1F

Beginning is half done. Endless beginnings are a life itself.

Thank you

